Mathematical modeling of 16S ribosomal DNA amplification reveals optimal conditions for the interrogation of complex microbial communities with phylogenetic microarrays
نویسندگان
چکیده
MOTIVATION Many current studies of complex microbial communities rely on the isolation of community genomic DNA, amplification of 16S ribosomal RNA genes (rDNA) and subsequent examination of community structure through interrogation of the amplified 16S rDNA pool by high-throughput sequencing, phylogenetic microarrays or quantitative PCR. RESULTS Here we describe the development of a mathematical model aimed to simulate multitemplate amplification of 16S ribosomal DNA sample and subsequent detection of these amplified 16S rDNA species by phylogenetic microarray. Using parameters estimated from the experimental results obtained in the analysis of intestinal microbial communities with Microbiota Array, we show that both species detection and the accuracy of species abundance estimates depended heavily on the number of PCR cycles used to amplify 16S rDNA. Both parameters initially improved with each additional PCR cycle and reached optimum between 15 and 20 cycles of amplification. The use of more than 20 cycles of PCR amplification and/or more than 50 ng of starting genomic DNA template was, however, detrimental to both the fraction of detected community members and the accuracy of abundance estimates. Overall, the outcomes of the model simulations matched well available experimental data. Our simulations also showed that species detection and the accuracy of abundance measurements correlated positively with the higher sample-wide PCR amplification rate, lower template-to-template PCR bias and lower number of species in the interrogated community. The developed model can be easily modified to simulate other multitemplate DNA mixtures as well as other microarray designs and PCR amplification protocols.
منابع مشابه
Phylogenetic Microarrays
Environmental microbial communities are known to be highly diverse, often comprising hundreds and thousands of different species. Such great complexity of these populations, as well as the fastidious nature of many of the microorganisms, makes culture-based techniques both inefficient and challenging to study these communities. The analyses of such communities are best accomplished by the use o...
متن کاملMitochondrial DNA sequence-based phylogenetic relationship of Trichiurus lepturus (Perciformes: Trichiuridae) from the Persian Gulf
In this study, mitochondrial DNA analysis using 16S ribosomal DNA (rDNA) was performed to investigate the phylogeny relationship of Trichiurus lepturus in the Persian Gulf compared to the other investigated area. The amplification of 16S rDNA resulted in a product of 600 bp in all samples. The results showed that the isolated strain belongs to T. lepturus showing 42 divergence sites among the s...
متن کاملMolecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures.
Molecular information about the bacterial composition of a coculture capable of sulfate reduction after exposure to oxic and microoxic conditions was used to identify and subsequently to isolate the components of the mixture in pure culture. PCR amplification of 16S ribosomal DNA fragments from the coculture, analyzed by denaturing gradient gel electrophoresis, resulted in two distinct 16S ribo...
متن کامل16S-Amplified Ribosomal DNA Restriction Analysis Assay for Discriminating Potentially Probiotic Lactobacillus Species Isolated from Traditional Dairy Products
Background: Traditional dairy products are the main sources for probiotic bacteria. This study aimed to isolate and characterize the potentially probiotic Lactobacillus strains isolated from traditional dairy products in Iran. Methods: Microbial population of each dairy product was enriched and screened for acid- and bile- resistant strains. The isolates were ...
متن کاملPhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification
In recent years, high-throughput molecular tools have led to an exponential growth of available 16S rRNA gene sequences. Incorporating such data, molecular tools based on target-probe hybridization were developed to monitor microbial communities within complex environments. Unfortunately, only a few 16S rRNA gene-targeted probe collections were described. Here, we present PhylOPDb, an online re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 27 15 شماره
صفحات -
تاریخ انتشار 2011